Predicting Model of Traffic Volume Based on Grey-Markov

نویسنده

  • Yinpeng Zhang
چکیده

Grey-markov forecasting model of traffic volume was founded by applying the model of GM (1,1) and Markov random process theory. The model utilizes the advantages of Grey-markov GM (1,1) forecasting model and Markov random process in order to discover the developing and varying tendency of the forecasting data sequences of traffic volume. The analysis of an example indicates that the grey-markov model has good forecasting accuracy and excellent applicability in predicting traffic volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Markov Chain Grey Regression Model to Forecast the Annual Natural Gas Consumption

Accurate forecasting of annual gas consumption of the country plays an important role in energy supply strategies and policy making in this area.  Markov chain grey regression model is considered to be a superior model for analyzing and forecasting annual gas consumption.  This model Markov is a combination of the Markov chain and grey regression models. According to this model, the residual er...

متن کامل

A novel grey–fuzzy–Markov and pattern recognition model for industrial accident forecasting

Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially ...

متن کامل

Formal approach on modeling and predicting of software system security: Stochastic petri net

To evaluate and predict component-based software security, a two-dimensional model of software security is proposed by Stochastic Petri Net in this paper. In this approach, the software security is modeled by graphical presentation ability of Petri nets, and the quantitative prediction is provided by the evaluation capability of Stochastic Petri Net and the computing power of Markov chain. Each...

متن کامل

Modeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M

Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...

متن کامل

Modifying PIARC’s Linear Model of Accident Severity Index to Identify Roads' Accident Prone Spots to Rehabilitate Pavements Considering Nonlinear Effects of the Traffic Volume

Pavement rehabilitation could affect the accident severity index (ASI) since restoration measures means more safety for road users. No research or project has been carried out to identify hazard points to build a linear model based on crash severity index. One of the very popular accident severity index models used in all countries is based on linear models to rehabilitate pavements and this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010